Building a TASTy interpreter

Shardul Chiplunkar
February 1, 2023

Abstract

In this report, I describe work towards an interpreter
for TASTy, a high-level binary interchange format for
Scala 3, motivated by the desire for a specification for
the format independent of the compiler. I explain
some core implementation details and summarize
the current state of the project and avenues for
future work, particularly regarding JavaScript inter-
operability and the Scala.js standard library. I also
describe a subsidiary project, TASTyViz, a web-
based TASTy visualizer motivated by the absence of
human interfaces for TASTy. I conclude by reflecting
on the challenges and takeaways of this project.

Introduction

What is TASTy?

The Scala 3 compiler (“Dotty”) introduces a new
high-level intermediate representation and binary
interchange format called TASTy, a near-acronym for
Typed Abstract Syntax Trees. TASTy tries to explicitly
represent many kinds of information that is implicit
or inferred by the compiler from the Scala' source,
including types, implicit parameters, scoped name
resolution, and method overload resolution. A
TASTy file represents the ASTs of the corresponding
Scala top-level statements along with enough addi-
tional information to straightforwardly compute
such inferred properties on demand.

TASTy enables two kinds of “interchange”. The first
is to better support separate compilation: the compiler
does not have to recompile a project’s dependencies
when recompiling the project. Instead, the compiler
can use the rich information stored in the dependen-
cies’ TASTy files and trust that they typechecked and
compiled correctly. The second kind of interchange
is between the compiler and other tools that deal
with Scala source code such as the Metals language
server (for highlighting, navigation, completion,
etc. in IDEs), the TASTy-MiMa API compatibility
checker, and static analyzers. TASTy makes the pars-
ing and inference results of the compiler available
to such tools, that would otherwise have spent a lot

of effort duplicating that work, often less accurately
than the compiler.

Motivation behind the interpreter

For an interchange format like TASTy to be most
useful, there needs to be a convenient API to read
the binary format, and a precise specification of its
semantics. The tasty-query project in development
at the Scala Center serves the former purpose. The
latter, until now, was only served indirectly by the
Scala compiler itself, insofar as the compiler guaran-
tees that Java bytecode compiled from TASTy will
behave the same as Java bytecode compiled from
Scala sources that produce the same TASTy. This
is unsatisfactory because the compiler only tries to
implement the semantics of Scala, which does not
guarantee anything about the semantics of inter-
mediate representations like TASTy, and further
depends on the JVM to actually execute programs.

Specifying the semantics of TASTy independently of
the compiler and the JVM is the primary motivation
behind this project to build a TASTy interpreter. The
interpreter is intended to be an ‘executable specifi-
cation’ in the sense that it produces correct outputs
for all valid (syntactically well-formed, well-typed)
input programs but promises nothing for invalid
input programs. In its ideal finished state, the inter-
preter would keep the compiler honest about the
meaning of TASTYy files it outputs.

A secondary motivation for this project comes from
the fact that the interpreter is written in Scala js,
for reasons explained in § Design principles, which
brings us one step closer to running Scala directly
in a browser or other JavaScript (JS) environment.
The Scala.js compiler compiles Scala (or rather, a
large subset of Scala, with minor semantic differ-
ences) into JS, but unfortunately cannot compile
itself. So, currently, a JS environment can only indi-
rectly run Scala code by first compiling it with the
Scala.js compiler running on the JVM. It seems more
feasible to compile to JS only that portion of the
Scala.js compiler that lowers Scala to TASTy, and
then interpret the resulting TASTy.

'In the rest of this report, “Scala” means Scala 3 unless specified otherwise.

https://dotty.epfl.ch/
https://scalameta.org/metals/
https://github.com/scalacenter/tasty-mima
https://github.com/scalacenter/tasty-query/

TASTy is close enough to the surface-level Scala that
a TASTy interpreter could serve as the foundation
for Scala debugging tools. Stepping through the
execution of a program, inspecting state, adding
instrumentation, etc. would likely be easier with
a naive interpreter as opposed to an optimizing
compiler that targets the JVM.

TASTy visualization

A particular challenge I encountered during this
project was not being able to explore the contents
of TASTy files in a human-friendly way. I was
not satisfied with the existing console-based pretty-
printer included with the Scala compiler (scalac -
print-tasty). tasty-query provides a great program-
matic interface to read TASTy but is not designed
for human consumption, so its text dumps were
also not very useful. Thus, I made my own web-
based TASTy visualizer called TASTyViz, described
in § TASTyViz.

Design of the interpreter

This section is not intended as documentation of
the code but as explanation of its interesting or non-
obvious portions. It will not make complete sense
without having the code for reference.

Design principles

Two principles characterize the design of the inter-
preter. The first is that the interpreter should be as
close as possible to the conceptual execution model
of Scala, as described in the official language spec-
ifications. In other words, the interpreter should
implement Scala’s semantics almost ‘by definition”.
This means that the interpreter does not perform
any optimizations, does not collapse or condense
internal representations for efficiency, and does
not try to interpret complex language constructs
in terms of simpler ones, e.g. by ‘compiling them
away’ and emitting intermediate TASTy for itself to
consume later. Of course, although the gap between
Scala’s semantics and TASTy’s semantics is small, it
still leaves some room for implementation choices
because this is a TASTy interpreter and not a Scala
interpreter. In such cases, I tried to pick the most
conceptually simple implementation.

The second design principle is to interpret Scala.js
(and to support interoperability with JS) instead of
Scala, and then naturally, to build the interpreter in
Scala.js instead of Scala. For an end user, Scala.js

code is nearly identical to Scala code, as is its behav-
ior. But a major implementation difference lies in

the fact that Scala code may call arbitrary parts of

the Java API whereas Scala.js code may only call

the subset of the Java API that has been manually

ported to Scala.js. In the former case, an interpreter

would have to defer to the JVM to execute Java calls—
already a nontrivial engineering challenge—which

may then even call back to Scala code, possibly

already compiled, posing an even greater challenge

for the interpreter to regain control. In the latter case,
Scala sources are available for the restricted Java

API, which dispatch the most fundamental opera-
tions to the underlying JS API. This is much easier to

interpret. Consequently, supporting this JavaScript

dispatch is essential to the interpreter, because it

is also an essential point in the Scala.js story for JS

interoperability.

Representations

In the rest of this report, terms in normal typeface
used as normal words in text (like ‘object”) will refer
to concepts or language specifications, while terms in
fixed-width typeface (like ScalaObject) will refer
to implementations inside the interpreter.

An environment (synonymous with ‘frame’) is
represented as an instance of ScalaEnvironment,
with mutable maps for term bindings and type bind-
ings; a parent environment, which is absent only for
the top-level environment; and an optional binding
for the this object. Terms and types inhabit sepa-
rate namespaces in Scala so the two binding maps
are entirely unrelated. The keys for each are TASTy
symbols (unique per actual entity being referenced)
and the values are inside a thin ScalaBox wrap-
per to support mutable variables (vars in Scala).
The language specifications say little about environ-
ments and the environment hierarchy, hence many
of the implementation choices are mine.

A method is represented as an instance of
ScalaMethod with an apply method to evaluate its
body given evaluated arguments. Note that in Scala,
methods are the only entity that can be “called’, and
they are not objects. A method must be converted
to a function (which is an object of type FunctionN)
before passing it as an argument to other meth-
ods/functions. Calling a function really means
calling its apply method, and a function is really
a thin wrapper around a (possibly anonymous)
method. Functions are represented as instances
of ScalaFunctionObjects. The interpreter also has

BuiltInMethods which execute Scala code directly
when called.

A class or trait is represented as an instance
of ScalaClass and has its own environment
where unspecialized methods (inheriting from
ScalaSpecializable) are bound. An object is
represented as an instance of ScalaObject with
its own environment. When an object is instanti-
ated, the methods of its class and those the class
inherits are specialized to that object and bound
in the object’s environment. A ScalaClassMethod
is specialized into a ScalaMethod that evalu-
ates in the environment of a specific object; a
ScalaClassBuiltInMethod is specialized into a
BuiltInMethod that closes over a specific object. The
instantiation process is described in greater detail
in § How an object is instantiated. A ScalaObject
also has methods to resolve a field/method access
(in Scala, obj.field, this.field, or just field,
depending on the context) or a super method access
(super.method or super[which].method when lexi-
cally within the object). The latter is surprisingly
tricky and is described in § Super.

Lastly, the data types Boolean, Int, String,
Unit, and Null are represented as subclasses of
ScalaObject with corresponding names prefixed
with Scala. These are placeholder implementations
until the interpreter is able to interpret the ported
Java API and ultimately dispatch primitive oper-
ations to the underlying JS environment. Unfor-
tunately, no progress has been made towards this
goal yet, but ideas and possible future directions are
described in § Evaluation.

How an object is instantiated

Suppose an object of class Foo is to be instan-
tiated. The corresponding TASTy will roughly
have the form Apply(Select(New(Foo), <init>),

List(constructor arguments)). Evaluating the
New node will create a new ScalaObject whose
ScalaEnvironment points to itself as the this object,
and has the constructor, <init>, bound to a special-
ized ScalaClassBuiltInMethod that was defined
while evaluating Foo’s definition. Then as expected,
Select will select this newly bound method, and
Apply will call it with the provided arguments. The
object is considered uninstantiated until this outer-
most call terminates.

Note that Foo may inherit from multiple
classes/traits in Scala, but lowering to TASTy
produces a linearization of the inheritance hierarchy,

and in particular, gives one concrete parent class for
Foo and possibly some mixin classes/traits.

Before presenting a detailed account of the construc-
tor, it will be useful to have a broad (but less
precise) picture in mind, as follows. First, some
fields of the object are initialized to some default
values (which ones specifically will be explained
in the next paragraph). Then, the concrete parent
class constructor is evaluated, which performs
these steps recursively; followed by the mixin
constructors, which also perform these steps but
do not recurse. Each constructor evaluation is itself
of the form Apply(Select(New(..), <init>), ..).
The createNewEnvironments flag on the current
ScalaObject ensures that all these constructors
affect the same ScalaObject instead of creating new
ones every time a New node is encountered. Finally,
all the methods and fields are bound, and the object
is returned from the constructor.

Below is the full description of how the constructor
of a class/trait C takes an uninstantiated object and
instantiates the C aspect of it:

1. Fields that access constructor arguments are
bound in the object’s environment to the values
of those arguments. (They may be needed to
call parent constructors, which happens before
other fields are bound.)

2. Other fields are initialized to null, false, zero,
etc. per their erased type. lazy vals are initial-
ized as instances of ScalalazyValue but not
computed. Both these initializations are done
for fields that are not overridden by a class/trait
lower in the linearization.

3. The parent constructors are evaluated in the
object’s environment. Specifically, the concrete
parent class constructor is evaluated (which
performs these steps recursively), and then the
mixins are evaluated (which do not recursively
call any constructors). Finally, createNewEnvi-
ronments is set to true so that step #5 can create
new objects not part of the current recursive
instantiation.

4. C’s methods, represented in the interpreter as
ScalaSpecializables, are specialized to this
object and bound in its environment.

5. Inner classes and non-overridden fields are
initialized. New bindings in the object’s envi-
ronment are created for inner classes while the
bindings from #2 are updated for fields.

6. createNewEnvironments is reset to false, unless

C was the ‘lowest’ class in the linearization,
in which case the object is instantiated and
createNewEnvironments stays true (from #3) so
that methods and fields are able to create new
objects. In any case, the object is returned from
the constructor.

Some possible bugs in this implementation have not
yet been addressed. New nodes passed as arguments
to parent constructors should cause new objects
to be created, which they currently don’t. Meth-
ods should be specialized and bound before calling
any parent constructors because a constructor might
call a method concretely defined in the child class.
These and other bugs could have a smooth resolu-
tion if createNewEnvironments is changed from a
field of ScalaObject to a parameter to evaluate,
toggled appropriately during recursive calls for
object instantiation.

Special cases

At the top level, the interpreter is a match-case on
TASTy nodes that calls a method to evaluate each
node, which can in turn call back to the match-case
for inner nodes. Ident/Select nodes and Super
nodes are notable departures from this pattern.

Ident and Select Evaluating an Ident or Select
node produces different results depending on
whether the node is being used for its value or for
its reference to the value. An environment lookup
or an object field access returns a reference r of
type ScalaBox[ScalaTerm], but by default, a value
is expected of type ScalaObject. The first step
of the conversion is to unwrap the ScalaBox via
r.value. The second step is to coerce the result-
ing ScalaTermto a ScalaObject via forceValue().
The concrete subclasses of ScalaTerm implement
forceValue differently:

e A ScalaObject returns itself unchanged.

e A ScalalazyValue triggers its deferred compu-
tation and returns the resulting ScalaObject.

e AScalaMethod oraBuiltInMethod evaluates its
body with an empty argument list and returns
the result. (This is because Scala follows the
uniform access principle, and a method by itself
is not a value/object.)

There are two circumstances in which the above
conversion to a value of type ScalaObject does not
occur. The first is when evaluating method calls

2Or super class type members, but I ignore this for now.

with explicit parentheses or arguments: the method
being called should not be evaluated with an empty
argument list by forceValue(), but should be
passed the arguments from the program. The
second is when evaluating an assignment statement.
Here, the original value of the left-hand side does
not matter at all, but the mutable value inside the
ScalaBox is updated to refer to the result of evalu-
ating the right-hand side of the assignment.

Super The Super node in TASTy is exceptional
because it is the only node that does not corre-
spond to a standalone language construct. Scala
objects can access super class methods”, but cannot
access a super class or ‘super object’, whatever
that means; inside the lexical scope of an object,
super.foo is syntactically valid, but just super is
not. Yet TASTy maps the former compositionally
to Select(Super(..), foo). Thus, the interpreter
does not try to evaluate a Super node on its own,
but rather only inside Select nodes.

Two similar syntaxes for super accesses belie two
very different semantics. The first is with an unqual-
ified super, as in super.foo, which I will call a
dynamic super access. Its meaning depends on two
pieces of information: the linearization of the run-
time class of the object in the context of which this
expression is being evaluated, and the enclosing class
which lexically contains this expression. Let LS
be the suffix of the linearization of the run-time
class starting right after the enclosing class. Then
super. foo refers at run-time to the first concrete
method definition for foo among the classes in LS.
At compile time, super. foo statically refers to the
first concrete method definition for foo among the
classes in the linearization of the enclosing class.

For instance, consider the following Scala code.

class B:

def foo = 2
trait T:

def foo = 3
trait U:

def foo: Int

trait V extends B:
override def foo =5
def bar = super.foo

class A extends B, T, U, V:
override def foo = 7

val x = A().bar

When evaluating super. foo, the run-time class is
A and the enclosing class is V. The linearization of
the run-time classis [A, V, U, T, B] so the suffix
starting right after the enclosing class is [U, T, B].
Among those, the first concrete definition of foo
appears in T, so that is the one referred to. The value
of x is thus 3. Note that the enclosing class V stati-
cally has no relation to T and that the symbol foo
in super. foo statically refers to the foo in B, which
appears in the linearization of V.

The second syntax for super method accesses
involves a class/trait qualifier, as in super[T] . foo,
which I will call a static super method access. Only
the enclosing class that lexically contains this expres-
sion is required to resolve its referent. The language
specification requires that T be a parent of this
enclosing class and that it contain a concrete method
definition for foo. This definition is the one referred
to by super[T].foo at run-time too.

For instance, consider the following Scala code.

trait T:
def foo = 3

class B extends T:

override def foo = 2
trait U:
def foo: Int
trait V extends B:
override def foo =5

class A extends B, U, V:
override def foo =7
def barB = super[B].foo
// def barU = super[U].foo
// def barT = super[T].foo

val x = A().barB

The value of x is 2 from the definition of foo in B.
Uncommenting the line with barU will give a compi-
lation error because U only abstractly declares foo.
Uncommenting the line with barT will give a compi-
lation error because T is not a parent of the enclosing
class A, even though T appears in A’s linearization.

Static and dynamic super access resolution is
supported by the matchingSymbol method of
TermOrTypeSymbol in tasty-query, used inside meth-
ods of ScalaObject.

A further complication with super accesses is
that they can optionally have a class prefix, as in
C.super. foo, specifying which class to consider
as the enclosing class if there are multiple lexi-
cally nested enclosing classes. Both static and
dynamic super accesses with this prefix will be
resolved with reference to C as the enclosing class.
However, these are not represented with Super
nodes in TASTy. Instead, an artifact method with
no body is created in C, whose name encodes
the prefixed super access, and the original super
access is replaced with a reference to this artifact
method. The super access has to be resolved at run-
time by decoding the name, which happens in the
resolveSuperAccessor method of ScalaObject.

Below is an example of prefixed super accesses.

class A:

def foo = 2
class AA:

def foo = 3
trait T:

def foo =5

class B extends A, T:
override def foo 7
class BB extends AA:
def barT = B.super.foo
def barA = B.super[A].foo

val objB = B()

val objBB = objB.BB()
val x = objBB.barT
val y = objBB.barA

The value of x will be 5 and that of y, 2. Here is a
purely suggestive depiction of the TASTy for B:

class B extends A with T:
override def foo = 7
artifact def superfoo: Int
artifact def superfoo$A: Int

class BB extends AA:
def barT = this[B].superfoo
def barA = this[B].superfoo$A

superfoo and superfoo$A are the artifact meth-
ods described before. In TASTy, superfoo is actu-
ally PrefixedName(super, foo), and superfoo$A
is PrefixedName(super, ExpandedName($, foo,
A)). this[B] is not valid syntax in Scala but
This nodes in TASTy are qualified with which
enclosing class they refer too. So the original
super access expression is replaced with, roughly,
Select(This(B), PrefixedName(..)).

One final special case involves dynamic super
accesses from traits, i.e. expressions of the form
super.method in the body of a trait T whose
linearization contains at least one class/trait U that
defines method. Statically, super.method will refer
to the definition in the first such U. But note that since
Tis a trait, there will never be objects whose run-time
class is T, and hence the linearization of T will never
be relevant. The static referent of super.method in
U may have no relation at all to the run-time refer-
ent which depends on the run-time class, which may
interpose arbitrarily many classes/traits between T
and U in its linearization. Hence, dynamic super
accesses from traits are not represented as Super
nodes in TASTy, but with artifact methods, similar
to the prefixed super accesses described earlier.

Here is an example in Scala and then in suggestive
TASTy as before.

class A:
def foo = 2

trait T extends A:
override def foo = 3
def bar = super.foo

class A extends Object:
def foo = 2

trait T extends Object with A:
override def foo = 3
artifact def
supercom$example$package$T$$foo: Int
def bar = this[T]
.supercom$example$package$T$$foo

This time, the artifact method mname is
PrefixedName(super, ExpandedName($$, Expan-
dedName(..), foo)), where the elided expression
consists of nested ExpandedNames with single $ tags
that represents the fully qualified name of the
enclosing class (here, com.example.package.T).
The actual method name foo appears as the

third argument instead of as the second as in the
PrefixedNames for prefix super accesses. I'm not
sure why these inconsistencies exist or if there is
a larger pattern with other occurrences of artifact
names that I'm not aware of.

Evaluation

The interpreter has a comprehensive implementa-
tion of the object model, including nuances of field
initialization, multiple inheritance, super method
accesses, and nested class definitions. This is imple-
mented in only a few hundred lines of code. I
have attempted to write exhaustive tests for every-
thing the interpreter can correctly interpret, checked
against both the output of the Scala compiler and my
personal manual evaluation of the input programs.
The entire project is available on GitHub.

However, the interpreter falls far short of being a
usable interpreter for realistic programs, with three
main shortcomings. I will describe them in increas-
ing order of how interesting I think they will be from
a research perspective.

The first is that the interpreter lacks the ‘plumb-
ing’ necessary for package declarations, main meth-
ods, import statements (for internal code or external
libraries), and generally scaling to projects spread
over multiple files that shouldn’t be maintained in
memory all at once. I don’t expect any major obsta-
cles here but I also don’t expect it to be an insignifi-
cant engineering effort.

The second shortcoming is that the interpreter does
not handle Scala’s expressive type system at all.
Type parameters, type members, casting, etc. have
no support in the interpreter, and in fact, many
design decisions were made without considering
types at all. For instance, § Super above explains the
implementation of super method accesses in great
detail, but ignores the fact that super expressions
can also access types. However, this should not be
a severe issue, because in TASTy (and lower in the
compiler), types are only relevant to the semantics
to the extent of their highly simplified erasure for the
Java runtime.

The third and most severe shortcoming is that the
interpreter does not tie into the standard library;,
or to be specific, the Scala.js standard library along
with the subset of the Java standard library that
has been ported to Scala.js. Primitive operations
like + on data types like String are implemented
as ‘mocks’ like ScalaString within the interpreter
with BuiltInMethods. However, some operations

https://github.com/shardulc/tasty-interpreter

delegate to java.lang.String, and some ultimately
to functions in the underlying JS environment. The
interpreter should be able to interpret these dele-
gations. More broadly, this requires implementing
JS interoperability features such as native and non-
native JS types that allow Scala.js code to access JS
APIs and emit JS-accessible APIs. This was one of
the design principles for the interpreter but unfortu-
nately I was not able to bring it into practice. I think
supporting interoperability with JS and integrating
with the standard library are the most interesting
directions for future work and also the most conse-
quential for the success of this project.

Other, more minor missing features in the inter-
preter include support for match-case statements
(which probably partially depends on support for
types), abstract classes and members, loops, and
exceptions. Any of these could make for good start-
ing points for someone looking to further develop
the interpreter.

TASTyViz

TASTyViz is a web-based visualizer for the TASTy
format. I developed it as a side project during my
work on the TASTy interpreter.

Motivation

While working on the TASTy interpreter, I often
needed to explore the contents of TASTy files and
various properties of TASTy symbols exposed by
tasty-query. tasty-query provides a great program-
matic interface to read TASTy but is not designed for
human consumption; the best it can do is produce a
long string representation of just the AST. I was also
not satisfied with the existing console-based pretty-
printer included with the Scala compiler (scalac
-print-tasty), although it includes a little more
information than the string output from tasty-query,
as illustrated in Figure 1. I envisioned a visual, reac-
tive interface more like Figures 2 and 3.

This drastic gap in tooling for TASTy was the
primary motivation for TASTyViz. TASTyViz would
not have been possible without tasty-query, but for
the development of any other tooling project that
uses TASTy, I think both the programmatic and the
human interface are essential. TASTyViz may even
encourage such projects to begin with by providing
an easy entry point to understanding and working
with TASTy.

A secondary motivation was to learn about JS inter-
operability and web development more broadly in
Scala.js. Understanding how to use and write native
and non-native JS types was important for the inter-
preter too, and I wanted to introduce myself to
the Scala.js web development ecosystem through
a hands-on project.

Design

TASTyViz is built on the MVC pattern (Model-View-
Controller). The models are lightweight wrappers
around data structures provided by tasty-query.
(Often, the model is used only to get the underly-
ing tasty-query data structure, which exposes a lot
more functionality.) There are three views of these
data: the PackageView allows the user to explore the
contents of packages similar to a filesystem browser;
the DefTreeView allows the user to explore a partic-
ular TASTy tree containing the definition of a class,
tield, type, etc.; and the SymbolInfoView displays
information about TASTy symbols selected by the
user, such as their type, TASTy flags, links to enclos-
ing symbols, etc. The controller manages the state
of the application and handles user input.

TASTyViz runs entirely client-side. It initializes
tasty-query with a classpath containing URLs to
source JAR files. These could be anywhere on the
network in theory, but are in practice served by the
same web server as TASTyViz itself. (Adding a
remote directory of TASTy files to the classpath is
not yet supported but should be possible.) Among
these JAR files are the standard libraries, for some
of which TASTy is not available. Once all the JAR
files on the classpath are loaded, the main interface
launches, allowing the user to browse anything on
the classpath for which TASTy is available.

TASTyViz relies on a few external Scala and JS
libraries. Of course, tasty-query with a custom class-
path loader is used to read TASTy. scalatags is used
to generate HTML. scalajs-dom is used to access the
JS DOM Fetch API. jQuery is used via jquery-facade.
The reactive tree interface is powered by the jQuery
plugin jsTree via a custom facade. Lastly, a custom
facade allows access to the JS History AP

Evaluation

TASTyViz constitutes significant improvement over
the prior state-of-the-art in human interfaces to
TASTy. It allows users to navigate the package hier-
archy, visually explore a TASTy tree, navigate to
related trees, collapse/expand and search nodes,

https://github.com/scalacenter/tasty-query
https://com-lihaoyi.github.io/scalatags/
https://scala-js.github.io/scala-js-dom/
https://jquery.com/
https://github.com/jducoeur/jquery-facade
https://www.jstree.com/
https://developer.mozilla.org/en-US/docs/Web/API/History_API

view additional information about TASTy symbols
such as flags and computed types, and share or
reload application URLs. There are certainly many
ways to improve this nascent project so I encourage
others working with TASTy to try using it, report
bugs, suggest improvements, and contribute. The
entire project is available on GitHub.

As of yet, there aren’t really any interesting research
questions about TASTyViz. It could form the basis
for new TASTy tools or improve the user experi-
ence of existing ones, or human interaction research
could inform its further development, as the inter-
face has so far been designed solely by my intuition
(within the limits of my technical abilities).

I learned through the input of my colleagues
Matthieu Bovel (LAMP) and Sébastien Doeraene
(Scala Center) that I took a rather old-fashioned
approach to web development. This is probably
because I have no training in web development,
but I had to start somewhere, and this project has
convinced me to try to learn to build modern web
applications.

Challenges

One of the main challenges I faced during this
project came from my depth-first approach in build-
ing the core functionality of the interpreter. I chose
to try to iron out all the details and edge cases
of object instantiation and multiple inheritance,
instead of taking a breadth-first approach and imple-
menting the basics of]S interoperability, type param-
eters and type members, import statements, etc. so
that the interpreter could evaluate simple yet realis-
tic complete programs (and simple portions of the
standard library) as soon as possible. In the end, I
built a solid foundation for the interpreter with a
comprehensive implementation of the object model,
but the interesting research question of JS interop-
erability remained untouched. It took three or four
careful iterations of a week or two each to get the
object model exactly right.

Another challenge, particularly at the start of the
project, was to understand the TASTy format and
what exactly tasty-query exposed about it. This later
motivated TASTyViz as the tool I wished I had. Had
I'had it from the start, I estimate that my work would
have been sped up by a couple weeks. Multiple
conversations with Sébastien Doeraene were also
essential in understanding TASTy and tasty-query.

A blessing in disguise was the fact that my work

on the interpreter uncovered several bugs in tasty-
query. This slowed down my work because I had
to keep rechecking my code until I shifted sufficient
doubt from myself to tasty-query, but prompted
many fixes and design improvements in the library.

Lastly, while working on TASTyViz, I found it diffi-
cult at first to understand how Scala.js interoperabil-
ity with JS worked. The Scala.js documentation on
the topic was ultimately helpful but still a little disor-
ganized and hard to follow. Plus, apart from under-
standing the theory, I struggled with writing my
own facades and navigating the numerous options
for adding JS library dependencies to a Scala.js build,
of which the latter I am still not sure I actually under-
stand.

Conclusion

This report describes my work on building a TASTy
interpreter, including the background and motiva-
tion, the design of the interpreter, and several direc-
tions for future work. The interpreter unfortunately
did not accomplish all of its original goals but did
give rise to a useful subsidiary project, TASTyViz, a
web-based TASTy visualizer, also described in this
report. I also reflect on the challenges I encountered
to try to mitigate them in the future, for myself or
others extending this work or similar projects.

My personal motives behind this project, to learn
Scala and familiarize myself with the Scala develop-
ment ecosystem, were certainly achieved through
this project. I got a hands-on introduction to Scala,
TASTy, Scala.js, and many related tools and tech-
nologies, learning a lot more than what I thought I
set out to learn. I also became familiar with the work
of LAMP and the Scala Center at EPFL which was
partly why I joined EPFL as a doctoral researcher
and will certainly be useful for my future research.
In conclusion, I would like to thank Sébastien Doer-
aene for being a very helpful mentor throughout this
project and paying attention to all my frequent and
frustrating issues, and Martin Odersky for provid-
ing general mentorship and feedback.

References
“An overview of TASTy.” https://docs.scala-
lang.org/scala3/guides/tasty-overview.html.

“TastyFormat.scala.” lampepfl/dotty repository,
GitHub, https://github.com/lampepfl/dotty /blob

https://github.com/shardulc/tastyviz
https://docs.scala-lang.org/scala3/guides/tasty-overview.html
https://docs.scala-lang.org/scala3/guides/tasty-overview.html
https://github.com/lampepfl/dotty/blob/9de66c957d79739ec7bf23d237e61f3f60b4c96c/tasty/src/dotty/tools/tasty/TastyFormat.scala

/9de66c957d79739ec7bf23d237e61£3f60b4c96¢/tast
y/src/dotty/tools/tasty /TastyFormat.scala.

Martin Odersky and Nicolas Stucki. “Macros: The
plan for Scala 3.” Scala Blog, 2018-04-30,
https://www.scala-lang.org/blog/2018/04/30/in-a-
nutshell.html.

Sébastien Doeraene. “Implementing Scala.js
Support for Scala 3.” The Scala Programming
Language website, 2020-11-03, https://www.scala-

lang.org/2020/11/03/scalajs-for-scala-3.html.

“tasty-query.”
https://github.com/scalacenter/tasty-query/.

Martin Odersky et al. “Scala Language
Specification — Version 2.13.”
https:/ /scala-lang.org/files/archive/spec/2.13/.

“Scala 3 Reference.”
https://docs.scala-lang.org/scala3/reference/.

https://github.com/lampepfl/dotty/blob/9de66c957d79739ec7bf23d237e61f3f60b4c96c/tasty/src/dotty/tools/tasty/TastyFormat.scala
https://github.com/lampepfl/dotty/blob/9de66c957d79739ec7bf23d237e61f3f60b4c96c/tasty/src/dotty/tools/tasty/TastyFormat.scala
https://www.scala-lang.org/blog/2018/04/30/in-a-nutshell.html
https://www.scala-lang.org/blog/2018/04/30/in-a-nutshell.html
https://www.scala-lang.org/2020/11/03/scalajs-for-scala-3.html
https://www.scala-lang.org/2020/11/03/scalajs-for-scala-3.html
https://github.com/scalacenter/tasty-query/
https://scala-lang.org/files/archive/spec/2.13/
https://docs.scala-lang.org/scala3/reference/

193:
195:
197:
200:
202:
205:
207:
209:
212:
213:
215:
218:
221:
224
225:
227:
230:
232:
234:
237:
239:
240:
242:
245:
247:
249:
251:
254:
2561
258:
261:
263:
264:

SHAREDtype 108
SELECT 29 [x]
TERMREFsymbol 168
SHAREDtype 119
TYPEDEF(69) 40 [SimpleFooWithSuperFields]
TEMPLATE(66)
APPLY(12)
SELECTin(10) 38 [<init>[Signed Signature(List(),testinputs.inheritance.!
NEW
IDENTtpt 35 [SimpleFooSub]
SHAREDtype 171
SHAREDtype 171
DEFDEF(4) 6 [<init>]
EMPTYCLAUSE
SHAREDtype 55
VALDEF(22) 41 [w]
SHAREDtype 108
APPLY(17)
SELECTin(13) 44 [*[Signed Signature(List(scala.Int),scala.Int) @*]]
SELECT 29 [x]
QUALTHIS
IDENTtpt 40 [SimpleFoolithSuperFields]
TYPEREFsymbol 202
SHAREDtype 119
SHAREDtype 108
INTconst 7
DEFDEF(20) 45 [y]
SHAREDtype 108
APPLY(15)
SELECTin(11) 44 [*[Signed Signature(List(scala.Int),scala.Int) @*]]
SELECT 29 [x]
QUALTHIS
IDENTtpt 40 [SimpleFooWithSuperFields]

Figure 1: Sample output of scalac -print-tasty showing a TASTy tree.

classpath:

e http://localhost:8080/extracted-rt.jar

e http://localhost:8080/scala3-library_sjsl_3-3.1.3.jar
* http://localhost:80880/scala-library-2.13.8.jar

+ http://localhost:8080/tasty-query.jar

+ http://localhost:8080/tasty-interpreter.jar

declarations in package testinputs.inheritance:

*<..>

e class Diamond
e class InitOrder
e class Mixins

* class Override
e class Scopes

e class Simple

e class Super

* Diamond

e InitOrder

e Mixins

e Override

. SQF@

. Mpl_e

. S_u'_ﬂ

Figure 2: Sample package navigation view in TASTyViz.

10

|back to owner |

| expand all| |collapse all|

parents
_ self (none)
. body

s ValDef x

Literal 2

- ValDef objl

4 Apply
4 function
1 Select
. %m qualifier
- New SimpleFoo

<init>

~ arguments

- ValDef testl

4. Select
;m qualifier
L Ident obj1

X

- ClassDef SimpleFooSub

4-- Template
?— constructor

" DefDef <init>

[show types

|search symbols ... |

‘Search TASTy nodes ...

fully qual'd name: <root>.testinputs.
inheritance.Simpl
e.SimpleFoo

flags: (none)

this is a: type symbol, class symbol

fully qual'd name: <root>.testinputs.
inheritance.Simpl
e.SimpleFooSub.<in
it>

flags: abstract, method
this is a: term symbol
type: () = Unit

links to types: <root>.scala.Unit

Figure 3: Sample TASTy tree view in TASTyViz.

11

	Abstract
	Introduction
	What is TASTy?
	Motivation behind the interpreter
	TASTy visualization

	Design of the interpreter
	Design principles
	Representations
	How an object is instantiated
	Special cases
	Evaluation

	TASTyViz
	Motivation
	Design
	Evaluation

	Challenges
	Conclusion
	References

