Two case studies for diagramming

Shardul Chiplunkar
June 15, 2023

Abstract

We make the case for better diagramming tools that
exploit the regular, compositional structure of diagrams
often used in computer science to allow the diagrammer
to easily describe diagrams at a higher level of abstrac-
tion than existing drawing programs, and compute with
them as first-class objects through natural APIs, with-
out compromising on their aesthetic quality. The ability
to programmatically produce pretty illustrations would
greatly enrich programming environments and proof
assistants. We motivate this vision with two case studies
of diagram domains, for which we describe the begin-
nings of diagrammatic theories as well as our prototype
implementations. We discuss what these case studies
reveal about the theory and practice of general-purpose
diagramming.

Introduction

Diagrams are ubiquitous in computer science. They are
found in research papers, textbooks, software documen-
tation & manuals, presentation slides (when well made),
and a significant portion of the whiteboards in any
computer science department. Most often, the object of
study is not the diagrams themselves, but the structure
or process they depict, such as the design of an algorithm
or a network; the diagram is a transparent representa-
tion. This will be one characteristic of what images or
drawings we define to be diagrams in the context of
this report: those that directly or transparently represent
something else. (We will leave our definition slightly
informal for the purposes of this report.) The other char-
acteristic we will use to distinguish diagrams from the
broader categories of graphics and visualizations is that
a diagram is schematic, comprised of a few simple compo-
nents, with no attempts at realism or realistic levels of
detail. As the term suggests, a diagram (whether explic-
itly or not) has a schema, a pattern with which other
similar diagrams could be constructed to represent simi-
lar things. Diagrams are hence often compositional to
some extent and structurally regular. Additionally, not
only are diagrams constructed schematically, but also
interpreted as such. We would not consider a binary
tree drawn with a computer drawing program to be a
different diagram from the same tree drawn by hand
with slightly squigglier lines and slightly misaligned

nodes. They are merely different renderings of the same
diagram, following the same schema, so to speak.

Hydra diagrams

The work presented in this report will be motivated by
a schema of diagrams found in the book Hydras & co.
by Castéran et al. [3]. They represent hydras, which are
tree-like objects that are the states of a combinatorial
game between Hercules and the Hydra (introduced as
an object of mathematical study in [7]). There is not
much about these diagrams that is specific to hydras, so
the theory and tools we will build can be easily applied
to other tree-like contexts, but the Hydras book will
provide a concrete example.

© 0 6 6 6

@) O
%
|
- O @)
I/ \

A hydra has a node, represented by a dot, and some
children which are also hydras, represented by lines
connecting the node to the children’s nodes. If a node
has no children it is instead called a head and repre-
sented by an outlined circle (really a smiley face, but
we can simplify). The fundamental operation in a hydra
game is to cut off a head, which is easily depicted by a
diagram like the one to the right in the diagram above.

We can turn this nice recursive structure of hydras into
a parallel construct in a programming language to allow
us to work with them programmatically. For instance,
the authors of Hydras do the following in Gallina/Coq:

Inductive Hydra : Set :=

| node : Hydrae -> Hydra

with Hydrae : Set :=

| hnil : Hydrae

| hcons : Hydra -> Hydrae -> Hydrae

Here they have chosen to represent a node and its collec-
tion of children as separate types, and have the latter be
implicitly ordered as a linked list. (Other representations

could have been equally valid.) Thus the two diagrams
from before represent the following two hydras:

(node
(hcons (node
(hcons (node
(hcons (node hnil)
(hcons (node hnil) hnil))) hnil))
(hcons (node hnil) hnil)))

(node
(hcons (node hnil)
(hcons (node
(hcons (node
(hcons (node (hcons (node hnil) hnil))
(hcons (node (hcons (node hnil) hnil))
(hcons (node (hcons (node hnil) hnil))
(hcons (node (hcons (node hnil) hnil))
(hcons (node (hcons (node hnil) hnil))
hnil))))))
(hcons [just cut off] hnil))) hnil)))

Now, we can exploit this structure to write elegant func-
tions to compute with hydras, for instance, to determine

the height:

fix height (h :
match h with
| (node hs) => 1 + (heights hs)

with heights (h : Hydrae) : nat :=
match h with
| hnil => 0
| (hcons hsub hsubs) =>

max (height hsub) (heights hsubs)

Hydra) : nat :=

Of course, we would also like to draw the diagrams
programmatically, to achieve a uniform appearance
and to be more conveniently able to make derivative
diagrams (to ‘compute with’ diagrams). The diagrams in
the book are drawn with TikZ, a standard programmatic
drawing tool in the computer science community [9].
For instance, here is how the left diagram from before is
drawn:

\node (N1) at (2,2) {\bullet};

\node (N2) at (2,4) {\bullet};

\node (N3) at (2,6) {\bullet};

\node (H1) at (0,8) {$\Smiley[1.5][vertfluol$};
\node (H2) at (4,8) {$\Smiley[1.5][vertfluol$};
\node (H5) at (4,4) {$\Smiley[1.5][vertfluol$};
\draw (N1) -- (N2);

\draw (N2) -- (N3);

\draw (N3) to [bend left=10] (H1);

\draw (N3) to [bend right=16] (H2);

\draw (N1) to [bend right=16] (H5);

What a stark contrast to the expression with node, hcons,
hnil! The TikZ source does not seem to reflect the
nice recursive structure of the hydra, nor does it seem
particularly conducive to computing as we had hoped.
Then it’s not a surprise that these diagrams become
rarer as the book proceeds, essentially vanishing alto-
gether when it gets to complex proof scripts for which
a diagrammatic aid to understanding would have been
most helpful. Drawing many hydra diagrams with TikZ
is just as tedious as drawing them by hand.

This report will ask and begin to answer the ques-
tions: what if simple representations like (node (hcons
(node hnil) hnil)) were sufficient to generate corre-
sponding and reasonably pretty diagrams? What if
computing the graphical size of a hydra diagram was
just as elegant as computing the conceptual height of
the hydra? What if we could trivially change the styling
to use nested boxes instead while preserving the seman-
tics and input language? Imagine a formalization of
hydras in a proof assistant like Coq where in addition
to having a textual Coq notation, the hydras in the goal
state at each step of a proof were illustrated automati-
cally; or a programming language where in addition to
defining a string representation for debugger inspection,
the hydra data type could just as easily define a diagram
representation...

OQQQQ

\\|//
/

\/

UEEEE]|

Diagrams for programming and proving

Diagrams are ubiquitous in computer science as
mentioned in the first paragraph of this report, but
two places they are rarely seen in are programming
environments and proof assistants. Why not? We
conjecture that two innovations are missing. Firstly, we
have not yet discovered the right language to describe
diagrams and compute with them, i.e. define operations

on diagrams that may or may not correspond to opera-
tions on the objects being represented. Languages like
TikZ are too low-level and hence too powerful for easy,
rapid prototyping in constrained domains; visualization
libraries like d3.js [2] are designed for domains that
often don’t have the compositionality or structural rigid-
ity/regularity that the diagrams we are considering do.
A good diagramming language should also make it easy
to extend the schema of a diagram with new types of
elements.

Secondly, programmatically generated diagrams are not
pretty enough. Human criteria for diagram aesthetics
are plenty and often unspoken: boxes must fit the text
they contain; edge crossings in a graph must be mini-
mized, within the layout constraints of the vertices them-
selves; spacing and lengths must reflect the abstract hier-
archy of the objects being diagrammed; elements should
either be perfectly aligned, or obviously unaligned, akin
to ‘general configurations’ in geometry where lines
are not drawn parallel unless specified as such; and
so on. Even when made explicit, implementing these
constraints requires significant effort and attention to
detail, making it not worth it for most users and hence
the responsibility of the library, which many libraries
do not shoulder either. The problem becomes yet more
difficult for ‘online’ diagramming, where the full object
is not known in advance (perhaps it is being incremen-
tally constructed by the user), but the diagram must
avoid major layout changes as far as possible to provide
the user with a stable visualization.

The broader vision that drives this project is to augment
mainstream proof assistants and programming envi-
ronments with tools for describing, computing with,
and making pretty renderings of diagrams, that do not
require too much time or effort from the user and that
address the problems described above. A secondary
benefit of such tools could be to automate—and maybe
even improve—static diagrams in research papers, text-

books, slides, and the like.

Hydra diagramming prototypes

In this section, we will look at the implementations and
results of two prototype tools for diagramming hydras.
The first tries to produce tree diagrams similar to those
found in the Hydras book, while the second tries an
entirely different approach, using nested boxes to repre-
sent the hierarchy. Both are implemented in Racket and
the source code is available on request. We will criti-
cally evaluate these prototypes later in § Discussion and
future work.

Trees

Recall our definition of hydras and their tree diagrams
from § Hydra diagrams. We start with the observation
that tree diagrams for hydras are recursively composi-
tional in much the same way that hydras are themselves.
A hydra node has zero or more children that are them-
selves hydras, and a node in a tree diagram has zero or
more children that are themselves trees, except that we
usually also want to connect the node to the nodes of the
children with lines that are not strictly part of either. For
the moment, let’s ignore the lines, and deal only with the
dots and circles that represent hydra nodes. We further
observe that the children (Hydrae in the Coq definition)
also happen to have a recursive compositional structure
as a linked list, although the order is not semantically
relevant. We can similarly define a hydrae diagram that
is not a tree but will become a tree when composed with
a parent node.

Thus:

« the hydrae diagram of hnil is an empty diagram;

« the hydrae diagram of (hcons h hs) is the hori-
zontal, bottom-aligned juxtaposition of the hydra
diagram of h and the hydrae diagram of hs;

@leee

o the hydra diagram of (node hs) is

— an outlined circle when hs is empty, else

— the vertical, center-aligned juxtaposition of a
small dot and the hydrae diagram of hs.

(OO

This is already beginning to suggest an API for our
diagrams. The constructors are the empty diagram, an
outlined circle, and a small dot; the operations are hori-
zontal, bottom-aligned juxtaposition and vertical, center-
aligned juxtaposition. While we’re at it, we may as
well define the other juxtapositions, all six combinations
of horizontal and vertical with left/top-aligned, center-
aligned, and right/bottom-aligned. Lastly, we need an
observer operation to draw a diagram, for instance as
vector drawing instructions to be rendered into an SVG.

In fact, the aligned juxtaposition operations can be
decomposed into simpler parts if we additionally keep
track of the spans of diagrams. (These are already
hinted at by the rectangular outlines for the diagrams

above.) Then we can compute the offset required to
align a diagram with another, say, centered horizontally,
and pass this offset as a parameter when drawing the
subdiagrams. The span of a juxtaposition is easy to
compute from the spans of its parts while the spans of
the constructors would have to be defined at the same
time as their observers.

Now we consider the connecting lines in a hydra
diagram. Finding one endpoint of each line is easy,
because it is just the parent node of the diagram. The
other endpoints will be the nodes of each child hydra
within the hydrae diagram. The hydra diagram being
constructed, in turn, should make its parent node avail-
able as an endpoint, should it be ever included in a larger
diagram. This observation suggests some extensions to
our diagram API:

« the empty diagram exposes no endpoints, and the
circle and dot expose one endpoint, namely their
centers; and

« the juxtaposition of two diagrams exposes some
endpoints as a function of the endpoints of the two
diagrams, in our case:

— only the single endpoint of the bottom diagram
for a hydra, and

— the accumulation of all the endpoints for a
hydrae diagram.

The roots are indicated with + below, before and
after a vertical juxtaposition.

DO DO

Thus the only action needed to construct a hydra
diagram beyond the juxtaposition is to actually draw the
lines between the internal endpoints as needed. Clearly,
lines do not have the same API as above, but we leave
the question of defining an API for lines for future work
and treat them as ad-hoc objects for now.

Finally, as an aesthetic preference, we would like the
lines to not extend right until the endpoints but end
some distance away. We achieve this by pairing each
endpoint with an anchor function that determines, for
any given source endpoint, where a line coming from
that source should ‘anchor’ in relation to the (destina-
tion) endpoint under consideration. (In general, we can
imagine lines needing to anchor at different locations,
to leave enough space for other components, or to avoid
awkward angles, etc.)

It turns out that this is all we need to automatically
draw reasonably pretty tree diagrams for hydras! With

less than 200 lines of Racket code, most of which could
arguably be part of a more general ‘diagramming library’
instead of a specific hydra-diagrams library, we are able
to turn expressions composed of node, hcons, and hnil
into pretty diagrams.

Nested boxes

Next, we attempt an entirely different diagrammatic
representation of hydras, albeit still with a recursive
compositional structure, using nested boxes. We will
produce diagrams where a box represents a node and its
children are represented as nested boxes. A hydra head
(a node with no children) is consequently represented
by an empty box which we color red as a stylistic pref-
erence. For instance, the diagram below represents the
same hydra as the diagram at the end of the previous
section.

This diagram schema has many more degrees of freedom
than the hydra trees we saw previously. Here, there are
many different possible layouts of child boxes inside a
parent box, even when we only consider layouts that
completely fill the available space, e.g. all children in one
horizontal line or three children in a 7 shape; and then
many possible relative distributions of space among the
children within any given layout; and we are still free
to choose the size of the outermost box. Note that we
ignore the semantically irrelevant ordering of children
present in the linked-list-like hydrae definition as nested
boxes have no obvious order.

This freedom will require more careful treatment than
tree diagrams to produce pretty output. We will start by

noticing that the layout and relative sizing of a box and
its direct children can be neatly described by defining
a grid in terms of relative proportions of the rows and
columns and defining the location and span of each child
in grid coordinates. (An example is shown below.) Then,
we will consider transpositions of grids, to make better
use of available space depending on the aspect ratio.
Finally, we will state some informal aesthetic properties
we want for our hydra box diagrams, and use them to
guide our implementation in terms of grid layouts.

A grid is defined by four parameters: the relative propor-
tions of the rows, the relative proportions of the columns,
the absolute gap between elements, and the absolute
padding between the edges of the layout and its elements.
(The row proportions are independent of the column
proportions since the eventual total height of the layout
is independent of the width. Also, we make the simpli-
fying, aesthetically-motivated assumption that the hori-
zontal and vertical gap is the same, but removing this
assumption from the implementation is trivial. Simi-
larly, we can assume the padding to be the same as the
gap unless specified.) With these parameters, given any
width and height, we can compute the start (green) and
end (blue) x and y codrdinates for every grid cell, as
shown in the figure below.

(define gl
(new grid-layout-with-lines% [...]
; columns rows
[grid-defn '((1 2 1) (3 1))]
[gap 16] [padding 10]1))

(send gl draw! 400 150)

(send gl draw! 200 200)

A grid layout of a collection of elements consists of the
grid definition along with the position of each element

in the grid as a starting row and column and the number
of rows and columns spanned.

(define gl [...]
; start row, start col, row span, col span
[item-defns (list (list @ 1 1 2 box))]
[...])

(send gl draw! 400 150)

To transpose a grid layout is to simply treat rows as
columns and vice versa. We do not change the meaning
of x and y or width and height, and we do not rotate
or flip any elements, and we do not ask the elements to
change how they draw themselves in any way. Trans-
posing twice returns the same grid layout.

(send (send gl transpose) draw! 400 150)

An autotransposing grid layout is a grid layout that
decides every time it is drawn whether to draw itself
directly or to draw its transposition, based on the width,
height, and grid and element parameters. The decision
predicate can be arbitrary. For the purposes of this
section, we only use one simple predicate, which aligns
the more numerous grid dimension (rows or columns)
with the larger length (width or height), ignoring the
proportions and contents of the grid.

Now, we wish to implement nested box diagrams for
hydras in terms of grid layouts. If a hydra node is drawn
as a grid layout, a natural choice would be to have each
subhydra also be a grid layout, as an element in the
parent layout, and finally the hydra heads would be grid
layouts with no elements. Beyond this structure, we
can informally describe the following ways in which we
would like our diagrams to be pretty, and how we can
achieve each of them:

Roughly equal head size Heads should be roughly
the same absolute size regardless of what total height
and width the diagram is drawn at. But we cannot
control the size of the heads directly, so we take a differ-
ent approach, assigning a weight to every (sub)diagram.
A head has weight equal to wy; a non-head node has
weight equal to the sum of the weights of its children,
plus w,. At every level of the diagram, we distribute
the available space among the siblings in proportion to
their weights. Then we intuitively expect heads to have
roughly the same absolute size because they all have
weight wy, and the space taken up by gaps and padding
in intermediate nodes is compensated by w,.

Roughly square boxes Boxes should not be too long
or too wide. Again, we cannot control the sizes of boxes
directly, but we can use autotransposing layouts at every
level of the diagram. We further note that for large
aspect ratios, a linear layout (i.e. only one row or column)
makes its elements more ‘square’ than any layout further
divided on the shorter axis. So each diagram actually
maintains two layouts, one linear and one potentially
more complex, and chooses between them based on the
aspect ratio every time the diagram is drawn with a
specific width and height, whereupon the chosen layout
further decides whether or not to transpose itself as
usual.
Simple grids Grids should not be too complex. (This
is the most informal and underspecified of our aesthetic
preferences.) When a grid layout has more than a hand-
ful of elements, the number of ways to lay them out
grows very quickly, and this has tricky interactions with
our decision to distribute space according to weight.
Thus we use the following algorithm to determine the
layout while keeping it visually relatively simple. Let h
be the number of ‘heavy’ elements that have more than
a quarter of the total weight w of the diagram. (wy, wy,
etc. will denote their weights.) Match on h:

« If 0, use a linear layout.

« If 1, split the available space in two as w1l : (w —w1).
Allocate the first part to the heavy element. Allo-
cate the second part to the rest of the elements,
laid out recursively with this algorithm with total
weight adjusted accordingly, except without a visi-
ble boundary or padding.

« If 2, split the available space in two as w1l : (w—w1),
and split the second part in two as w2 : (w—wl1—w2).
Allocate the first and second parts to the heaviest
and second-heaviest elements. For the third part,
recurse as above.

o If 3, split the available space in two as wl : w2, and
split both parts in two as w1 : w3. Allocate the heav-
iest, second-heaviest, and third-heaviest elements
as indicated by the ratios of the areas. For the fourth
part, recurse as above. Empirically, this gives good
results.

This concludes our implementation. Again, in around
200 lines of Racket code, much of which we could argue
is a more general-purpose library for grid layouts, we are
able to turn expressions like ((()())(O)(O)CCOI))
(the slight difference in input language is a trivial matter
of syntax) into diagrams like the following, for any width
and height.

:DD

[]
[]

)

Discussion and future work

The first question we ask of our hydra diagramming
prototypes is, how do they generalize to our broader
vision for diagramming tools? We argue that many
of the key ideas and implementation strategies form
the beginnings of a general theory of and library for
diagrams. First, we introduced the notion of a schema
of diagrams, that we started to be able to specify at alevel
of abstraction higher than specifying the renderings of
individual diagrams in it. Second, we began investi-
gating some algebraic properties of tree diagrams that
are likely common to many other schemas, including
aligned juxtapositions and the consequent implemen-
tation choices with spans, the separation between the
algebraic object and its rendering (where the latter may

take more parameters), and the endpoints and anchor
functions associated with a diagram. Third, we were able
to produce an elegant implementation of grid layouts
that can additionally be transposed and nested. Fourth,
we investigated how common but informal and hard-to-
pinpoint aesthetic preferences for grid layouts can be
reasonably achieved by simple extensions to the basic
library.

Nevertheless, important challenges remain. One is the
applicability of these techniques to diagram domains
with less or no hierarchical structure. Primitive construc-
tors likely play a much bigger part in such domains than
combinators; how do we make them easy to define and
use, while also playing well with combinators when
required? How do we make it easy to extend a highly
structured domain with components that break the
pattern?

Another challenge is the treatment of connectors like
lines and arrows which we have discharged ad hoc for
tree diagrams. How do connectors fit into our philos-
ophy of exploiting the regularity and compositionality
of diagrams? We point out that even in our existing
implementation, merely knowing the endpoints exposed
by two elements was not enough to draw a connector
between them, because we wanted the connector to
anchor some distance away. In general, connectors can
behave specially at the ends, such as with arrowheads or
adapting to the shape of the diagram being connected;
they can change the span of a diagram and influence its
layout with respect to others if we care about overlaps
or crossings; they can curve and align or intersect with
each other, and it is difficult to pinpoint what makes their
layout intuitively pretty or not. Connectors must also
be able to cross the hierarchy and connect elements at
different levels, which suggests that beyond just expos-
ing a name for endpoints, diagrams should expose paths
to endpoints contained within them. It remains to be
seen how we can make it natural for a user to specify
connectors in a diagram schema without concerning
themselves with low-level layout.

So far, we have not considered the question of ‘packing’,
i.e. keeping track of the spans of diagrammatic elements
with more fidelity than just a rectangle. This can be
important for offline layout where frugality of space
usage is desirable, as opposed to online layout (when
the entire diagram is not known in advance) where we
would instead leave empty space in case it is needed later.
For instance, packing is one of the primary motivations
behind the forest package for TikZ [10], and indeed, it is
a key difference between the tree diagrams we produce
and those from the Hydras book. This notion is also rele-

'https://diy.inria.fr/doc/herd html#sec84

vant when laying out text as part of a diagram because
we often want to fit or minimally resize elements around
text or play with the tradeoff between length and width.

same problem: sometimes, the trees were just too wide, They looked something like the tree on the left,
while I wanted something like the tree on the right

cp cp
T T T
npP TF DpP T
VAN VAN YANEEVAN
D NP T vP D NP T vP
N CcP v VP N cp v vp
/N VAN VANEEVAN
C TP DF \'A C TP DI v
/N VAN VANV
T vP v DP T vP Vv DP
N N
VAN VAN
Dp Vv DF V
VAN
vV DP V DP

The first page of forest’s documentation.

A more practical challenge that remains is the plumbing
to connect our current and future diagramming tools
with proof assistants and programming environments.
For a tactic-oriented proof assistant like Coq, an essen-
tial feature would be to show the diagrams directly as
or as part of the goal state in the user interface. A less
essential but nonetheless very desirable feature would
be to enable the user to describe diagrams from within
the proof assistant, like textual notations in Coq, and
tweak the drawing procedures in its native program-
ming language. On the other hand, diagramming in
regular programming environments will likely have a
different workflow that we have yet to investigate.

We believe that the most promising way forward for
this project is to build similar tools for more diagram
domains, develop them to the point where they can
smoothly produce pretty diagrams for a wide range
of examples, and only then start to attempt to gener-
alize them into a more general-purpose diagramming
library. Domains we are interested in exploring in the
near future include string diagrams, used, for instance,
for quantum circuits [4], linear algebra [8], and Boolean
logic [5], among others; linked data structure visualiza-
tions such as for linked lists, trees, and ‘environment
diagrams’ used to teach introductory programming [6];
and diagrams for visualizing concurrent program behav-
ior and memory models, such as those produced by

herd7' [1].

References

[1] Jade Alglave, Luc Maranget, and Michael
Tautschnig. Herding Cats: Modelling, Simu-
lation, Testing, and Data Mining for Weak
Memory. ACM Transactions on Programming

https://diy.inria.fr/doc/herd.html#sec84

(3]

Languages and Systems, 36(2):7:1-7:74, July 2014.
https://dl.acm.org/doi/10.1145/2627752. (cited
on: 7)

Mike Bostock. D3.js. https://d3js.org/, 2021. (cited
on: 3)

Pierre Castéran, Jérémy Damour, Karl Palmskog,
Clément Pit-Claudel, and Théo Zimmermann.
Hydras & Co.: Formalized mathematics in Coq for
inspiration and entertainment. In Journées Franco-
phones Des Langages Applicatifs: JFLA 2022, 2022.
https://hal.science/hal-03404668. (cited on: 1)

Bob Coecke and Ross Duncan. Interacting quan-
tum observables: Categorical algebra and diagram-
matics. New Journal of Physics, 13(4):043016, April
2011. https://dx.doi.org/10.1088/1367-2630/13/4/
043016. (cited on: 7)

Tao Gu, Robin Piedeleu, and Fabio Zanasi. A
Complete Diagrammatic Calculus for Boolean
Satisfiability. Electronic Notes in Theoretical Infor-
matics and Computer Science, Volume 1 - Proceed-
ings of MFPS XXXVIII, February 2023. https:
//entics.episciences.org/10481. (cited on: 7)

(6]

[8]

Philip J. Guo. Online python tutor: Embeddable
web-based program visualization for cs education.
In Proceeding of the 44th ACM Technical Symposium
on Computer Science Education, SIGCSE 13, pages
579-584, New York, NY, USA, March 2013. Asso-
ciation for Computing Machinery. https://dl.acm.
org/doi/10.1145/2445196.2445368. (cited on: 7)

Laurie Kirby and Jeff Paris. Accessible Indepen-
dence Results for Peano Arithmetic. Bulletin of the
London Mathematical Society, 14(4):285-293, July
1982. http://doi.wiley.com/10.1112/blms/14.4.285.
(cited on: 1)

Joéao Paixao, Lucas Rufino, and Pawel Sobocinski.
High-level axioms for graphical linear algebra.
Science of Computer Programming, 218:102791,
June 2022. https://www.sciencedirect.com/science/
article/pii/S0167642322000247. (cited on: 7)

Till Tantau. The TikZ and PGF Packages. https:
//www.ctan.org/pkg/pgf, May 2023. (cited on: 2)

Saso Zivanovié. The forest package for
LaTeX/TikZ/PGF. https://www.ctan.org/pkg/
forest, 2017. (cited on: 7)

https://dl.acm.org/doi/10.1145/2627752
https://d3js.org/
https://hal.science/hal-03404668
https://dx.doi.org/10.1088/1367-2630/13/4/043016
https://dx.doi.org/10.1088/1367-2630/13/4/043016
https://entics.episciences.org/10481
https://entics.episciences.org/10481
https://dl.acm.org/doi/10.1145/2445196.2445368
https://dl.acm.org/doi/10.1145/2445196.2445368
http://doi.wiley.com/10.1112/blms/14.4.285
https://www.sciencedirect.com/science/article/pii/S0167642322000247
https://www.sciencedirect.com/science/article/pii/S0167642322000247
https://www.ctan.org/pkg/pgf
https://www.ctan.org/pkg/pgf
https://www.ctan.org/pkg/forest
https://www.ctan.org/pkg/forest

	Abstract
	Introduction
	Hydra diagrams
	Diagrams for programming and proving

	Hydra diagramming prototypes
	Trees
	Nested boxes

	Discussion and future work

