
Transfer pivot translation in Apertium
Shardul Chiplunkar

for Google Code-In 2016

Keywords: rule-based machine translation (RBMT), pivot translation, Apertium, ScaleMT

Abtract

Rule-based machine translation (RBMT) systems
built with the Apertium platform produce high
quality translations, given extensive bilingual dic-
tionaries and shallow-transfer lexical and structural
rules [1]. I implemented transfer pivot translation—
translation using one or more languages as interme-
diate (‘pivot’) translation targets without specially
modifying the translations in the process (‘trans-
fer’)—to extend the scope of possible translations
with minimal additional effort. This paper discusses
the details of this work and its future implementa-
tion prospects across Apertium’s API, web interface,
and IRC bot.

Introduction

Apertium is a free and open-source RBMT plat-
form which can build RBMT systems from bilingual
dictionaries and shallow transfer rules for lexical
selection and structural transfer [1]. Apertium it-
self has extensively developed some such systems,
such as among various Romance languages ([2] de-
scribes initial work), along with community-driven
systems such as for languages of the Turkic fam-
ily1. Apart from the morphological analyzer/gener-
ator and part-of-speech tagger that each language
requires, each language pair requires a bilingual
dictionary to find equivalents of lexical forms, lex-
ical selection rules to disambiguate analyses, and
shallow-transfer rules to transfer syntactical struc-
tures. While this produces high-quality translation
systems, these requirements are difficult to fulfill as
they must most often be written manually.

Pivot translation is a technique that can expand
the scope of possible translations using one or more
intermediate (‘pivot’) target languages between the

1Outlined at http://wiki.apertium.org/wiki/
Apertium_Turkic#Publications.

source and final target languages. For example2,
Apertium does not have a direct translation system
from English (eng) to Portuguese (por), but with
pivot translation, Spanish (spa) and Catalan (cat)
can be used to translate

eng → spa → por
eng → spa → cat → por

etc. as required. As Apertium is a rule-based plat-
form, transfer pivot translation—where no special
modifications are made at any intermediate step—is
the easiest way to do this, as opposed to other com-
mon approaches to pivot translation which involve
statistical approaches.

I implemented transfer pivot translation in Aper-
tium’s web API ‘apertium-apy’3 which is modeled
on ScaleMT [3], and in the web interface ‘apertium-
html-tools’4. The ScaleMT infrastructure uses
parallel asynchronous pipelines for each translation
pair, so the challenge was to ensure that a text being
translated is correctly passed through multiple such
pipelines without slowing down the system. On the
other hand, the challenge for the web interface was
to create an intuitive interface to view and select
from possible pivot translations. I also developed
an interface to pivot translation for Apertium’s IRC
bot begiak.

The following sections of this paper describe, in
order, details of contributions to apertium-apy,
apertium-html-tools, begiak, and possibilities
for future work.

Web API
apertium-apy is modeled after the ScaleMT ar-
chitecture for efficiency and scalability [3]. Each
translation pair, e.g. eng → spa, has an associ-
ated pipeline running independently of all other

2This will be a running example throughout this paper.
3https://github.com/goavki/apertium-apy
4https://github.com/goavki/apertium-html-tools

1



pipelines. Pipelines initialize all required resour-
ces when started and maintain them thereafter.
Pipelines are started and stopped on various servers
by a central router based on the quantity of re-
quests and server load. The router also provides an
outward-facing REST API with endpoints for func-
tions such as translation, morphological analysis
and generation, listing available pairs, calculating
translation coverage, etc.

Pivot translation requires passing the source lan-
guage text into one of these pipelines, waiting for its
output, then passing it into another pipeline, and
so on until the text is obtained in the target lan-
guage. However, as the pipelines run independently
in parallel, care had to be taken to perform the
entire operation asynchronously so as to not block
the entire system or slow down individual pipelines
with a pivot translation request. The crucial ele-
ment that I wrote was a coreduce routine5, which
takes a list of functions and the initial arguments
as its arguments and asynchronously applies each
function to the result of the previous function.

I developed two API endpoints6 to access this
functionality. The first was translateChain which
takes a list of languages, e.g. eng|spa|por, and a
text in the source language eng, and gives the text
after performing the eng → spa → por translation.

It would be convenient if apertium-apy auto-
matically chose pivot translation languages if only
the source and target were provided. Thus, I im-
plemented Dijkstra’s algorithm for finding shortest
paths between all possible language pairs on a par-
ticular server, which are found and recorded by
the server at start-up for future use. Dijkstra’s
algorithm was used in particular because of the pos-
sibility of using weights for each direct translation
pair—currently, the weights are all equal and have
no bearing on the path chosen—which is discussed
in the ‘Summary and Future Work’ section.

The second API endpoint was listPairs which
already had modes to list direct pairs, analyzers/gen-
erators, and taggers. I added a mode to take a
source language and give all possible target lan-
guages that could be obtained through pivot trans-
lation. This mode merely accesses the list of shortest

5Line 251 in translation.py in https://github.com/
goavki/apertium-apy/pull/43/files

6Documented at http://wiki.apertium.org/wiki/
User:Shardulc.

Figure 1: Target languages for eng with and without
pivot translation

paths described in the previous paragraph. For ex-
ample, Figure 1 shows that with eng as the source
language, the only direct translation targets are
spa, cat, and a couple others, but the pivot targets
include por too.

Web Interface

Preliminary changes to apertium-html-tools for
pivot translation are shown in Figure 1. A check-
box was added to enable pivot translation along
with a link explaining what pivot translation is
(termed “multi-step translation” so that the func-
tion is clearer from the name). If this checkbox
was checked, the dropdown and target language
selection bar, which would otherwise only enable
direct targets, enabled targets that would require
pivot translation to achieve. To actually perform
the pivot translation, apertium-html-tools would
use the API described previously.

However, this approach has a few shortcomings:
it does not display the pivot translation path for
a selected target language, or even its length for a
rough measure of accuracy, and it does not allow
the user to select custom pivot translation paths. I

2



Figure 2: Unselected pivot translation graph for
eng → por and the same graph upon selecting cat
and spa nodes

built a graphical interface to remedy this which is
shown in Figure 2.

The user is presented with a directed graph of
possible direct translations that can be used as pivot
languages for the eng → por translation. The user
clicks to select pivot languages cat and spa, rep-
resented as nodes, which then turn blue; all direct
translation pairs, represented as arrows, which are
part of some pivot path involving the selected lan-
guages also turn blue. (In the figure, there is no
direct translation pair that does not involve spa
or cat, so there are no gray arrows.) If any paths
involving only the selected languages exist, the ar-
rows for the entire path turn green and the desired
path can be selected from a ‘Valid Paths’ list.

The graph shown is already complex and needs
to be movable and spread out to be of use. Thus, it

is built using the force-directed graph provisions of
the powerful JavaScript visualization library D3.js7.
This means that the nodes repel each other and the
arrows tend to maintain their length, while the
source and target language nodes can be moved
around by the user as wanted, making the whole
interface dynamic and intuitive. Care was taken to
ensure that the interface functions as expected on
mobile devices as well.

IRC Bot

Apertium’s IRC bot begiak could already obtain
direct translations using apertium-apy, so adding
provisions for pivot translations—of course, per-
formed on the API side—was not a difficult matter.
However, I discovered a large number of malfunc-
tioning or broken API-accessing commands in the
process, and rewrote almost the entire module8

so that it could provide access to most, if not all,
apertium-apy functions.

In order to aid future development, I added docu-
mentation for the new code and bot commands, and
also created extensive unit tests9 for the module.

Future Work

An important possibility for future development is
using the quality of direct translations to decide
pivot translation paths. Absolute quality evalua-
tions for a direct pair are not available and may
not be practical, but estimates would make a great
difference for pivot translation. These estimates
could be used as weights in the implementation of
Dijkstra’s algorithm mentioned in the ‘Web API’
section, could be served over the API, and could
be used to provide a visual representation of the
quality of direct translations and pivot paths in the
graphical interface in the ‘Web Interface’ section.
It is also possible that the weights are adjusted
depending on the text to be translated after deter-
mining translation coverage for that specific text,
but this appears to be very inefficient.

7https://d3js.org/
8https://github.com/goavki/phenny/blob/master/

modules/apy.py
9https://github.com/goavki/phenny/blob/master/

modules/test/test_apy.py

3



The lack of such quality evaluations makes pivot
translation an experimental feature which would not
have as much utility to average users as the other
services Apertium provides. Thus, pivot transla-
tion has only been enabled on the Apertium Turkic
website10 and not on the main Apertium website11,
which may be the object of future work.

Finally, due to minor bugs and a lack of rigor-
ous documentation and testing, the graphical inter-
face is not currently part of any Apertium websites.
The inclusion of the interface would benefit the
Apertium Turkic website which has enabled pivot
translation but suffers from the shortcomings of
the preliminary approach described in the ‘Web
Interface’ section.

Overall, pivot translation is a promising prospect
for Apertium, expanding the scope of possible trans-
lation services. While translation quality has not
been objectively evaluated, some direct translation
pairs are of high enough accuracy that one-pivot and
occasionally two-pivot translation produces good
results. Further development might eliminate the
need for pivot translation, or—an alternative which
has been suggested early in Apertium’s history [4]
and more-or-less followed since then—improve ex-
isting direct pairs through community involvement
to the point where pivot translation merely pro-
vides bridges between groups of languages with
high-quality translations among themselves.

Summary and Acknowledgments

I integrated transfer pivot translation functionality
across Apertium’s infrastructure, comprising devel-
opment of the web API, the web interface, and the
IRC bot. For these contributions, I was selected
by Apertium mentors as one of two Grand Prize
Winners in Google Code-In 2016, an open-source
software development contest for high-schoolers run-
ning from December 2016 to January 2017. (A total
of 34 Grand Prize Winners were selected by 17 orga-
nizations in the contest, from over 1,300 participants
across the world.)

I express my heartfelt gratitude towards Jonathan
Washington, Sushain Cherivirala, Kevin Brubeck
Unhammer, Joonas Kylmälä, Wei En, Tino Didrik-

10http://turkic.apertium.org/
11https://www.apertium.org/

sen, and many others on the #apertium IRC chan-
nel and on GitHub for their guidance and feedback.
I am also grateful to the Google Code-In team for or-
ganizing the Google Code-In contest, providing the
essential resources that introduced me to Apertium
and to open-source development. I look forward to
contributing to Apertium in the future.

References
[1] Tyers, Francis M. et. al. “Free/open-source

resources in the Apertium platform for ma-
chine translation research and development”.
The Prague Bulletin of Mathematical Linguistics,
no. 93, Jan. 2010, pp. 67–76.

[2] Corbí-Bellot, Antonio M. et. al. “An open-source
shallow-transfer machine translation engine for
the romance languages of Spain”. Proceedings of
the European Association for Machine Transla-
tion, 10th Annual Conference, Budapest, Hun-
gary, 30–31 May 2005, pp. 79–86.

[3] Sánchez-Cartagena, Víctor M. and Pérez-Ortiz,
Juan Antonio. “ScaleMT: a Free/Open-Source
Framework for Building Scalable Machine Trans-
lation Web Services”. The Prague Bulletin of
Mathematical Linguistics, no. 93, Jan. 2010,
pp. 97–106.

[4] Armentano-Oller, Carme, et. al. “An open-
source shallow-transfer machine translation tool-
box: consequences of its release and availability”.
Proceedings of Open-Source Machine Translation
(OSMaTran), Machine Translation Summit X,
Phuket, Thailand, 12–16 Sep. 2005, pp. 23–30.

4


